Home » Events » Switching Time Optimization for Nonlinear Switched Systems

Switching Time Optimization for Nonlinear Switched Systems

浙江大学玉泉校区智能系统与控制研究所二楼资料室, 9 a.m., July 2, 2018

Prof. Ryan Loxton, full professor in the School of Electrical Engineering, Computing, and Mathematics at Curtin University, Australia.

Abstract: Switched systems operate by switching among various different modes. Determining the optimal times at which the mode switches should occur is a fundamental problem in systems and control, with particular importance to the numerical solution of optimal control problems. This talk will discuss the switching time optimization problem for two classes of switched systems: those with time-dependent switching conditions (where the switches are directly controllable), and those with state-dependent switching conditions (where the switches occur when the system hits certain switching surfaces in the state space). It is widely believed that standard numerical optimization techniques struggle when applied to switching time optimization problems. In this talk we present new results showing that this challenge is over-stated; contrary to popular belief, switching times can in fact be optimized effectively using standard optimization methods. We verify this with a numerical example involving a switched system model for the production of 1,3-propanediol, an industrial polymer used in paints, adhesives, and lubricants.

Bio of the speaker: Ryan Loxton is a full professor in the School of Electrical Engineering, Computing, and Mathematics at Curtin University, Australia. His research focuses on developing new mathematical techniques to optimize complex processes in a wide range of applications such as mining, oil and gas, agriculture, and industrial process control. Ryan’s work has been recognized with several high-profile awards, including two prestigious, highly competitive fellowships from the Australian Research Council and the 2014 West Australian Young Scientist of the Year Award. A passionate advocate for industry engagement, Ryan has led many industry-funded research projects with companies such as Woodside Energy, Linkforce, Roy Hill Iron Ore, Vekta Automation, and Global Grain Handling Solutions. His mathematical algorithms underpin the Quantum software system (developed by Onesun Pty Ltd) for tracking, executing, and optimizing maintenance shutdowns in the resources sector. This technology was the winner of the 2017 South32 Designing for Excellence Innovation Award. Ryan is an Associate Editor for the Journal of Industrial and Management Optimization and has published over 70 papers in international journals and conference proceedings.